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Abstract 

The objective of this paper is to provide a critical review of the natural language 

processing (NLP) approaches to discovering hidden drug-drug interactions (DDIs) from 

biomedical research literature. In this paper, I provide an overview of three techniques for using 

text mining to find DDIs in huge corpuses of research papers. The first technique to be 

presented involves using sentence co-occurrence in full-text articles [1], the next involves 

creating a template-based classifier for use in full-text articles [2] and the last uses text-mining 

and automated reasoning in research abstracts [3]. For each NLP approach, an overview of the 

technique is reviewed and followed by a discussion of the trade-offs between the different 

approaches and potential avenues of improvement. 

There exist a number of other techniques but I chose to review these three because they 

represent some of the first and most popular attempts at using text-mining to discover DDIs. 

However, as the field of applying NLP to medical text is very new, other techniques generally 

either tweak and improve on these methods or bring in new methods from Machine Learning or 

NLP. This paper concludes with an overview of the three aforementioned techniques and notes 

the current progress in the field. 

 

Introduction 

Drug-drug interactions are defined as situations in which the simultaneous consumption 

of two or more drugs causes one or more of the drugs to affect the activity of another. Typically, 

drug-drug interactions occur when two drugs interact with the same gene product, though a 
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number of other modes of interaction exist, such as one drug changing the pH of the stomach, 

reducing absorption of another drug, among many other ways [2]. Historically, drug-drug 

interactions have been largely unpredictable and in 2011, it is estimated that DDIs account for 

nearly 30% of the 700,000 adverse drug event (ADE) injuries that occur every year [4].  

However, with the steadily increasing number of drugs on the market and an aging 

population with growing medical needs, the study of drug-drug interactions has become more 

important in increasing longevity and quality of life. According to the National Health and 

Nutrition Examination Survey, over 76% of elderly Americans are on two or more drugs today 

[4] and the Kaiser Family Foundation indicates that the average 70-year-old American fills over 

30 prescriptions per year [2]. In spite of the growing need for knowledge about DDIs, our 

understanding of them has been relatively murky, as clinical trials for new pharmaceuticals 

focus on establishing the safety and efficacy of single drugs and do not typically investigate 

DDIs [5]. For the past few decades, attempts to uncover these DDIs have been done by manual 

curation, which is expensive, slow and unscalable. 

In the past few decades, however, the natural language techniques of text mining and 

information retrieval were created and refined during the boom of search engines and have only 

in the past few years begun to be used to mine the DDIs from large unstructured information 

bases, such as medical literature and EMRs. As a result, many new techniques have utilized 

modern NLP tools to map out DDIs and reduce the number of adverse drug events, including 

the three following methods.  

 

Method A: Pharmspresso (Sentence Co-occurrence) 

Garten, et al. [1] reports the use of text mining to automatically create a network of drug-

gene relationships, using sentence-level co-occurrence in full-text of scientific articles. By doing 

so, they hope to score genes based on their likelihood of interacting with a specified drug. 

Although they do not directly search for DDIs, the network of drug-gene relationships can easily 
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be used to identify DDIs that occur as a result of two drugs metabolizing the same gene product, 

and done by a number of studies, including that of Percha, et al. [2], mentioned later.  

The sentence-level co-occurrence methodology utilized by Garten, et al. improves on a 

previous algorithm by Hansen et al. called PGxPipeline [6], which requires two drug-gene 

knowledge bases and one protein-protein interaction network. These are namely: the 

Pharmacogenomics Knowledge Base (PharmGKB) and DrugBank (both for drug-gene 

interactions) and the InWeb interactome (for gene-gene interactions). Using these knowledge 

bases, PGxPipeline scores genes scores “based on their propensity to modulate drug response 

for a query drug” [1]. However, since the two drug-gene relationship databases PharmGKB and 

DrugBank are manually curated, they are expensive and difficult to maintain. Instead, Garten, et 

al. propose a new method that uses sentence-level co-occurrence in full-text medical literature 

using an algorithm that they previously developed called Pharmspresso to extract drug-gene 

relationships from the medical literature in place of the manually-curated databases. These new 

text-mined drug-gene relations are then applying the PGxPipeline to score these drug-gene 

relationships. The methodology used by Garten, et al. is mentioned below: 

1. Obtain a corpus of full-text articles of drug-gene relationships. Garten, et al. used the 

QUOSA desktop application to automatically download the full-text PDFs from 

PharmGKB. 

2. Generate a training set of drug-gene relationships. Garten, et al. extracted the 

relationships from the core tables of PharmGKB for all articles. For articles that contain 

more than one gene or more than one drug, relate all combinations of genes and drugs. 

3. Run the Pharmspresso algorithm to create a drug gene network as follows [7]: 

a. Pharmspresso begins by initially tokenizing a corpus of full-text articles into 

sentences and words (Garten et al. do this using Perl scripts adapted from 

Textpresso search engine open source package. Note that Pharmspresso is built 
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on the Textpresso package with minor modifications for pharmacogenomic 

relationships.) [7]. 

b. Then text is tagged in XML format with a tagging algorithm developed by Garten, 

et al. The text is tagged using a Pharmspresso ontology of two types of 

ontologies: biological entities (drugs, disease, genes, etc.) and relationships 

between entities (associations such as ‘binds’ and ‘interacts’, biological 

processes such as ‘acetylated’, ‘matures’, etc.). This tagging algorithm works 

using the Textpresso search engine’s templates, which themselves rely on a 

large written set of regular expressions to find templated relationships in text. The 

XML-tagged text is indexed for use by the Pharmspresso search engine. 

c. A drug-gene network is then created by drawing edges between genes and 

drugs that co-occur in the sentence level, with the weight of each edge 

corresponding to the number of articles supporting the relationship. 

4. Run the PGxPipeline algorithm to score all genes according to their propensity for 

modulating drug response for a query drug as follows [6]: 

a. For a query drug and a given gene (referred to later as the original gene), the 

PGxPipeline first finds the gene’s direct interaction partners (first-degree 

connections in the network) in the InWeb gene-gene interaction network and 

links this gene to its partners. 

b. For each partner gene, note the drugs with which the partner gene interacts with 

in the drug-gene relationship network created by Pharmspresso.  

c. Using the drugs found in the previous step, score the ‘original gene’ based on the 

structural drug similarity to the query drug as defined as the Tanimoto coefficient 

of 166 structural features and based on the similarity of indications of use 

(encoded in Medical Entity Subject Heading terms) which also uses a Tanimoto 

coefficient [1]. The Tanimoto coefficient is defined in this case as the number of 
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features in common divided by the total number of features for both drugs [6]. 

Note that the original PGxPipeline used PharmGKB and DrugBank as sources of 

drug-gene interactions but Garten, et al. uses the drug-gene network created 

with Pharmspresso. 

d. Train a logistic regression classifier on input positive examples (relationships 

derived in step 2) and three random negative examples (examples not in the 

positive set) using the features of structural similarity and similarity of indications 

(as defined as Tanimoto coefficients), mentioned in the previous step. Note that 

logistic regression classifiers, like all other machine learning classifiers, require 

positive and negative training examples in order to separate items (whose data 

on their features is own) into different classes. Hansen, et al. delve into greater 

detail about how they set up their logistic regression classifier in the 

supplementary data of their paper [6]. 

e. Use the logistic regression classifier to classify which drug-gene pairs are 

predicted to have a relationship with each other. 

 

Ultimately, Garten, et al. compared their text-mining classifier against the original 

curation-based classifier using 5-fold cross validation on a gold standard set of drug-gene 

interactions. This gold standard consists a total of 682 unique drug-gene relationships from the 

916 PharmKGB articles that mention at most one gene and one drug from. When using only 

known pharmacogenes (genes with some known relationship to a drug) as negative examples, 

with a only the 682 unique drug-gene relationships, Garten, et al. finds that “the text-mining-

based classifier out-performs the original classifier, with (ROC) curves with area under the curve 

(AUC) of 0.701 and 0.672 respectively).” (Figure 1) [1]. This indicates a very low false positive 

rate, despite possible low recall. However, this result indicates that under some conditions, the 

text-mining-based approach can work just as well, if not better than the manually-curated 
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approach. Garten, et al. explains that this can be because identifying drug-gene relationships is 

not what “PharmKGB curators have been tasked with; they curate articles with respect to which 

genes and drugs that are mentioned without specifically asserting which genes and drugs relate. 

Therefore, it is not surprising that when using the high-quality gold standard that the text-mining 

classifier actually performs slightly better” [1]. 

 

Figure 1 (from Garten, et al.). This shows the performance of Garten, et al.’s 

text-mining-based classifier against the curation-based classifier when using only 

known pharmacogenes as negative examples for the logistic regression classifier 

and a stricter gold standard for evaluation. 

 

However, when using all genes as negative examples and expanding the definition of 

gold standard to all known drug-gene relationships in the PharmKGB data, Garten, et al.’s 

classifier generates an ROC curve with AUC value of 7.99 as opposed to 0.814. 

In addition, Garten, et al.’s method can also be used to identify highly likely potential 

drug-gene relationships. They performed an external validation of their text-mining classifier by 

using 1,636 relationships that were added to PharmGKB after establishing the original training 
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set to score three times that many randomly chosen drug-gene relationships. Each relationship 

was scored leaving out knowledge of the relationship during training. In performing this external 

validation, Pharmspresso found many relationships that do not appear in PharmGKB but had 

high scores from the classifier and that co-occur in several sentences. These were marked as 

‘putative relationships’ and submitted for review by PharmGBB, including the relationship 

between CYP3A5 and cyclosporin, which has been verified and now has three articles in 

PharmGKB that support this relationship. 

Since Garten, et al. create a classifier to determine drug-gene relationships, these 

relationships can easily be used to find instances of the subclass of DDIs where two drugs 

interact with the same gene. Since the combination of sentence co-occurrence in various 

articles combined with the PGxPipeline scores can help predict new drug-gene relationships, 

these new drug-gene relationships also facilitates the discovery of novel drug-drug relationships. 

A great disadvantage to the use of sentence co-occurrence in medical literature is that 

this method cannot resolve cases where the explicit names of the two drugs are not in the same 

sentence. This can occur, for example, in the case of the sentence: “99% of all humans carry 

the same single nucleotide polymorphism at the gene G. This gene heavily affects the response 

to drug D.” This is called anaphora, where an element of text refers to another element, and will 

not be picked up by simple sentence co-occurrence. As a result, there are bound to be a 

number of false negatives. There are a number of probabilistic models and computational 

methods being developed on this front, including DrugNerA, a NLP tool by Segura-Bedmar, et al. 

which performs sentence splitting, tokenization, POS-tagging, chunking, and linking of phrases 

with UMLS concepts to resolve anaphoras specifically related to biomedical literature [8]. 

However, the greater concern when using sentence co-occurrence to identify drug-gene 

relationships is the possibility of false positives, which are likely to occur if a drug and gene that 

have nothing to do with each other happen to occur in the same sentence. Since sentence co-

occurrence can happen easily between unrelated drugs and genes in full-text research articles, 
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it is perhaps more likely for Pharmspresso to have false positives than false negatives. This 

trade-off between false positives and false negatives should always be taken into account when 

choosing a method for text-mining DDIs.  

Furthermore, this method does take into account the type of relationship between the 

drug and the gene. Garten, et al. mention that it would be advantageous to know if a drug and 

gene have a positive or negative relationship or whether the gene is pharmacokinetic (gene or 

gene products affect drug) or pharmacodynamic (drug affects gene or gene products) for the 

drug. One way to improve on this is to use the existing tags to identify potential relationships 

between the drugs, since words of the sentence are already tagged with the Pharmspresso 

Ontology. One may be able to improve this method by experimenting with sentence co-

occurrence of three elements: one drug, one gene and one relationship. The next paper by 

Percha, et al. proposes a solution to this using templates. 

 

Method B: Template-based classifier 

Percha, et al. present another gene-drug relationship classifier to infer novel DDIs 

through combining known facts expressed in scientific text. Unlike the previously mentioned 

sentence co-occurrence method, the method proposed by Percha et al. uses a random forest 

classifier to determine what types of gene-drug relationships best predict DDIs and also 

proposes a mechanism for the mechanism of interaction by assigning the type of interaction 

between each gene-drug pair (metabolize, inhibit, activate, etc.). The methodology is listed 

below: 

1. Create two lexicons of terms: one for gene names and one for drug and drug-class 

names. Percha, et al. used a set of 731 known pharmacodynamic and pharmacokinetic 

genes and a set of 2,910 unique drug names (both from PharmGKB). 

2. Obtain a corpus of article abstracts. They used all Medline extracts published before 

2009. 
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3. Tokenize all articles into sentences and retrieve all sentences that mention both a drug 

and a gene of interest (hereafter, referred to as ‘seeds’). 

4. Represent sentences as dependency graphs using a parser (in this case, the Stanford 

Parser). Dependency graphs are defined as rooted, oriented and labeled graphs, where 

words are nodes and edges are dependency relations between words. A sample 

dependency graph is given below in Figure 2. Discard sentences in which two seeds are 

not located in the same sentence and remove from sentences with more than one 

clause, clauses do not have both seeds. 

 

Figure 2 (from Percha, et al.). “This shows a sample dependency graph for the 

sentence ‘Pepstatin A also blocked the acetaminophen-induced degradataion of 

the CYP3A4 in a transfected HepG2 cell line”. The red arrow shows the path 

through the graph that connects the seeds Pepstatin A (a drug) and CYP3A4 (a 

gene). Because this path contains a verb - in this case, “blocked” - this is a 

sentence of interest” [2]. 

5. Normalize composite entities, such as ‘degradation of CYP3A4’ or ‘CYP3A4 elimination’ 

into the same concept (Elimination) using an ontology of concept terms.  

6. Extract relations between composite entities. where relations are verbs (e.g. associated) 

or nominalized verbs (e.g. association) and composite entities are the two entities in a 

given sentence that are related by this verb.  
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7. Normalize relations (in the same way that context terms were normalized) to a set of 

normalized relationships taken from the ontology. For example, map ‘associated’ and 

‘related’ to isAssociatedWith and map less common terms like ‘augment’ to ‘increase’. 

8. Now with many normalized gene-drug relations of the form specified in Figure 3, put all 

relations into passive voice, collapsing passive/active pairs of normalized verbs (e.g. 

isMetabolizedBy and metabolizes) into single features and eliminate duplicate similar 

relations. 

 

Figure 3 (from Percha, et al.). “A single drug-gene edge in the semantic 

network... (a) The general form of an edge. (b) A specified example.” 

9. With your unique active-voice drug-gene relations, construct a semantic network, with 

each edge having the form listed in Figure 3. 

10. Extract all the genes names, relation words, and context terms found on all of the 

shortest paths between two drugs to create your set of features. Find the shortest paths 

by performing a breadth-first search for every possible pair of drugs, D1 and D2. This 

assumes that the shortest textual path linking two drugs in the network represented the 

simplest explanation for the mechanism of their interaction. Note that in this paper, 

Percha, et al. made the decision to explore only paths of the form: D1 and context - 
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relation - gene and context - relation - D2 and context, because of computational 

feasibility and for ease of mechanistic explanation.  

11. Train a random forest (a supervised machine learning classifier) to recognize interacting 

drug pairs based on the textual features of their connecting paths using 5000 known-to-

interact drug pairs as the positive training examples and 5000 additional random drug 

pairs, with no overlaps with the positive set (in this case, Percha, et al. took all training 

pairs from DrugBank). Do this by recording all the features observed in every positive 

and negative training example. Percha, et al. recorded their features as unique numbers 

and used the R library implementation, randomForest to train and execute the random 

forest classifier. 

a. Note that random forests are ensemble methods in which many uncorrelated 

trees “vote” to classify data points and each tree uses only a subset of the 

features to maintain a lack of correlation. The number of trees must be set based 

on experimentation to minimize the overall error classification (Percha, et al. 

found that the classification error for their data set stabilized around 200 trees). 

12. Run the classifier, using a voting cut of 50% of the votes of decision trees to classify a 

training point as positive. To determine the most likely mechanisms of interaction for a 

drug pairs, take the path with the highest number of decision tree ‘yes’ votes. 

Percha, et al. evaluated the performance of their DDI classifier with the out-of-bag 

(OOB) error estimate, where they train each decision tree using only ⅔ of the available data. 

Note that there were a total of 172,271 negative training examples (paths between 5000 

noninteracting drug pairs) and 182,534 positive training examples. Of the 172,271 negative 

training examples, it corrected classified 135,842 of them as non-interacting (78.85% specificity) 

and of the 182,534 positive training examples, it correctly classified 145,619 of them as 

‘interacting’ (79.78% sensitivity). In total, the classifier correctly assigned 281,461 out of 

354,805 training paths (and has an overall classification accuracy of 79.3%).  
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In addition, the random forest uses a permutation method to determine the most 

important textual features and were able to determine the 50 most important features, including 

but not limited to certain genes, context terms such as “Synthesis”, “Expression”, “DrugDose”, 

“DrugMetabolism”, “GeneInhibitor” and the relations “metabolizes”, “inhibits”, “suppresses”, 

among others. 

Ultimately, once the random forest classifier has been trained, it is a very powerful tool 

for predicting new DDIs that are not yet known and a powerful tool for figuring out the 

mechanism by which a DDI occurs. Percha, et al. hope “to use the trained random forest to 

predict the most likely mechanisms of interaction between drug pairs that are often prescribed 

together but whose interaction status is not yet known.” [2]. 

Because classifier still operates on the sentence level, it is also susceptible to false 

negatives due to anaphoras, as acknowledged by Percha, et al. In future work, they hope to find 

ways to resolve anaphora, and they suggest “perhaps by considering pairs of entities that are 

mentioned in the same abstract, not just the same sentence.” Other modes of resolving 

anaphora are also being developed and can improve this algorithm, as the previously 

mentioned tool created by Segura-Bedmar, et al. [8]. 

However, this technique has a low probability of making false positives since the drug-

gene relationship must match a certain template based on a limited ontology of 731 known 

pharmacodynamic and pharmacokinetic genes and a set of 2,910 unique drug names (both 

from PharmGKB) and 41 relation words. In contrast to the technique proposed by Garten, et al., 

it is far less likely to have a false positive if a drug and a gene exist in this structure in a 

sentence.  

Furthermore, this technique also gives types of relations to drugs and genes, which was 

a limitation in the Garten, et al. study. This also enables it to propose multiple possible 

mechanisms of drug-drug interactions since we now have explicit drug-gene relations and 

ultimately gives an evaluation of certainty of each of these mechanisms (percentage of trees 
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that give ‘yes’ votes), which ultimately facilitates exploration of these potential pathways and 

verification of new DDIs. For example, in the classification of a known DDI between verapamil 

and atorvastatin, many paths between the two drugs go through ABCB1, where edges on one 

side of multiple paths indicate that verapamil inhibits ABCB1 activity and edges on the other 

side indicate that atorvastatin upregulates ABCB1 activity, indicating interfering functions. These 

paths all have greater than 90% of yes votes. 

 

Method C: Using Text-Mining and Automated Reasoning 

In addition to text-mining the medical literature, as did the previous two methods of 

mining DDIs from scientific literature, Tari, et al. [3] present a method that combines text-mining 

and automatic reasoning about biology to make high-quality predictions of new DDIs. Like 

Percha, et al., this approach also attempts to explain the mechanism of the interactions. The 

methodology used by Percha, et al. is as follows: 

1. Performing an offline one-time parse of the 17 million Medline abstracts by extracting 

both explicit drug interactions and implicit drug interactions to turn the unstructured 

information into structural representation in a ‘parse tree database’. This is done using a 

number of pre-established external tools, including the Link Grammar parser [9] to parse 

the free text, BANNER to identify the official gene/protein names [10], MetaMap to 

identify the official drug name [11], and GNAT to disambiguate gene mentions [12] by 

identifying the official gene symbols for each gene mentions identified by BANNER. In 

the parse tree database, the structured information includes grammatical structures of 

sentences in the form of ‘parse trees’ (ordered, rooted trees that represent syntactic 

structure according to a language’s grammar, where nodes are part of speech tags and 

leaves are words) and the biological entities involved in the sentences. The parse tree 

database is managed by MySQL and the parse trees are accessed using PTQL, a 

language that Tari, et al. created to query the database. 
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2. Extraction of DDIs from the database is split into extracting explicit drug interactions, 

where a DDI is explicitly mentioned in a sentence, and implicit drug interactions.  

○ To extract explicit drug interactions from sentences such as the following, 

Enantioselective induction of ‘cyclophosphamide’ metabolism by 

‘phenytoin’ (PMID: 10423284), one would use a PTQL query as such:  

//S{//?[Tag=‘Drug’](d1) => 
     //?[Value IN {‘induce’, ‘induces’, ‘inhibit’,    
     ‘inhibits’}](v) => //?[Tag=‘Drug’](d2) => 
     //?[Value= ‘metabolism’](w)} :: [d1 v d2 w]5 : 
     d1.value, v.value, d2.value 
which specifies that a drug (d1) has to be followed by a form of ‘induce’ or ‘inhibit’ 
and then followed by another drug (d2) with the keyword ‘metabolism’. 
 

○ To extract implicit drug interactions, one must infer based on various properties 

of drug metabolism, in other words, through automatic reasoning. For example, 

one could extract <protein, metabolizes, drug> triplets with the following PTQL 

query:  

//S{/?[Tag=’DRUG’](kw2) => //VP{//?[Value IN 
     {’metabolised’,’metabolized’}](kw1) =>  
          //?[Tag=’GENE’](kw0)}} :::  
               kw0.value, kw1.value, kw2.value 
which specifies that a drug (kw2) is followed by verb phrase (VP) that includes a 
form of ‘metabolized’ and is followed by a gene mention (kw0).  

3. In order to start reasoning, Tari, et al. transforms the extracted interactions for reasoning 

purpose by transforming them into their logic forms (e.g. the triplet <cyp3a4, metabolizes, 

lovastatin> is represented as extr(cyp3a4, metabolizes, lovastatin), protein(cyp3a4), 

drug(lovastatin), meaning that the ‘cyp3a4 metabolizes lovastatin’ relationship was 

extracted, cyp3a4 is a protein and lovastatin is a drug).  

4. To ensure that the extracted relations are high-quality interactions and can be applied to 

derive DDIs, some data cleaning is done. The data cleaning involves incorporating 

general knowledge about drug metabolism and DDIs to filter out low-quality relations. To 

do this, Tari, et al. first identifies protein families and considers negative interactions.  
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○ An example of identifying protein families is as follows: 

“A protein p is considered as an ‘enzyme’ if either one of the following holds (in 
the given order of precedence): 

■ p belongs to the CYP, UGT or SULT gene families, i.e. official gene 
symbol starts with CYP, UGT or SULT; 

■ p is annotated under UniProt as having keywords ‘hydrolase’, ‘ligase’, 
‘lyase’ or ‘transferase’; 

■ p is annotated under the GO term ‘metabolic process’ (GO: 0008152); 
■ the Entrez Gene summary (provided by RefSeq) of p contains the key 

phrase ‘drug metabolism’ or the regular expression ‘enzyme*’ or 
‘catalyz*’.” [3] 

 
If a protein p meets all of these requirements, then it is represented in the form of 

enzyme(p) 

○ An example of negative interactions is as follows: 

■ In the following sentence: “... oxybutynin is predominantly metabolized by 

CYP3A4 and CYP3A5 but not by CYP2D6” (PMID: 9584328), negation 

words such as ‘not’ cause the negative interaction <CYP2D6, 

not_metabolizes, oxybutynin>. 

Data cleaning is then done with AnsProlog [13] logic rules to refine interactions. 

AnsProlog is a declarative language that is useful for specifying what kind of reasoning 

to be performed rather than how to perform the reasoning. To clean the data, an 

AnsProlog logic rule would specify that in order to have the interaction metabolized(D, P), 

meaning that drug D metabolizes protein P, the following conditions must be fulfilled: 

○ D must be a drug 

○ P must be an enzyme (because only enzymes can metabolize substances) 

○ there must be no instances of extr(P, not_metabolizes, D). 

After applying this AnsProlog logic rule, the extracted interactions extr(GENE1, 

metabolizes, oxybutynin) would turn into the logical facts metabolized(oxybutynin, 

GENE1) but extr(GENE2, metabolizes, oxybutynin) would not become a logical fact if 

extr(GENE2, not_metabolizes, oxybutynin) is among the interactions. 
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5. Tari, et al. then encode knowledge about drug metabolism in the form of AnsProlog logic 

rules and extract relationships to reason about potential DDIs and reveal the most 

promising ones. They do this by, for example, by making a rule where Dr1 decreases 

Dr2 if... 

○ Dr1 increases the level of protein P 

○ protein P is an enzyme 

○ Dr2 is metabolized by P 

○ Dr1 is a drug 

○ Dr2 is a drug 

This is shown in the following AnsProlog logic rule given as an example in the Tari, et al. 

paper: result(Dr1, decreases, Dr2) :- affects(Dr1, level(P, high)), 

enzyme(P), metabolized(Dr2, P), drug(Dr1), drug(Dr2). In order to find 

the answer set of all drugs that match this AnsProlog logic rule, an AnsProlog solver 

called clingo [14] can be used to computer this set, which will be composed of DDIs 

among D. 

Tari, et al. evaluated the performance of their method with a gold standard from 

DrugBank that was created by selecting 265 drugs, which had 494 known DDIs with the 

description that one drug increases or decreases the effect of another. They ran their algorithm 

on all Medline abstracts and found 170 predicted DDIs for the 265 aforementioned drugs, with 

132 of the extracted interactions being true positives (77.7%), according to their originating 

sentences on DrugBank. However, only 20 of these true DDIs (11.8%) are annotated in the 

DrugBank standard, indicating that there is a potentially large number of published drug 

interactions that are not annotated.  

Furthermore, Tari, et al. searched for novel induction/increase- and inhibition/decrease-

based DDIs by running their method over all 17 million Medline abstracts and predicted 4154 

direct DDIs of this type, where a drug directly increases or reduces an enzyme’s levels, causing 
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a change in the levels of another drug that the enzyme metabolizes (see step 5 of the 

methodology section for an example). For direct enzyme inhibition or induction relationships, 

108 predicted DDIs coincided with the DrugBank gold standard but while evaluating 315 

unconfirmed interactions, they found that 256 of them (81.3%) have the correct evidence to 

support the existence of a DDI. 

Tari, et al.’s method differs significantly from both Garten, et al.’s and Percha, et al.’s in 

that it uses many extracted drug-gene and gene-gene interactions to predict DDIs that are not 

explicitly stated in the text. The establishment of an automatic reasoning system that took into 

account biological knowledge is also unique to Tari, et al.’s approach.  

As with any NLP information retrieval task, there is always the trade-off between 

sensitivity and specificity. Because of the stringent methodology used for data cleaning here, 

drug-gene relationships and explicit drug-drug interactions will only be treated as a logical fact if 

they pass a greater number of more difficult criteria. As such, a small set of very high-quality 

rules is established, which simultaneously discourages false positives and encourages false 

negatives.  

Furthermore, the use of so many external tools for various steps of the method (such as 

the Link Grammar parser [9] to parse the free text, BANNER to identify the official gene/protein 

names [10], MetaMap to identify the official drug name [11], GNAT to disambiguate gene 

mentions [12], etc.) offers various chances for improvement in terms of building one’s own tools 

customized to drug-drug interactions. For example, supplementing BANNER or MetaMap with 

lexicons of genes or solely pharmacogenes or drugs of interest can improve the method by 

customizing the parameters of your tools to the domain of your research, rather than using 

generalist tools. This, of course, should take care to avoid overfitting.  

 

Conclusion 
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As mentioned in all three articles, the trade-off between false positives and false 

negatives is the problem of all classification tasks, and should always be considered when 

picking a classifier and setting the parameters and cutoffs. In order of presentation, the first 

method which used sentence co-occurrence throughout full-text articles (hereafter called 

Method A), was the most likely to have false positives and less likely to have false negatives 

while Percha, et al.’s technique, which used templates (hereafter called Method B) would have 

less false positives and more false negatives and the technique presented by Tari, et al., which 

incorporated biological knowledge and cleaned the data (hereafter called Method C), was least 

likely to have false positives and more likely to have false negatives because of the high 

standards that could rule out many potential DDI relationships. In the case of discovering new 

DDIs, it is more valuable to have fewer false positives since this reduces the noise in your DDI 

predictions and increases the selectivity and quality of your predictions. Since all DDIs need to 

be verified through experimentation, if your predicted DDI set has mostly true positives, then 

after investigation, many more DDIs will have been acknowledged and added to databases and 

increase the likelihood of preventing an adverse drug event involving a DDI. Therefore, the Tari, 

et al.’s method ranks the most favorable since it theoretically should produce the lowest number 

of false positives while predicting DDIs.  

In terms of critically and constructively analyzing the methods, I believe that there is a lot 

for each method to take from the the others and that the best method will come from some 

combination of the three. Here are a few ways: 

● Method A could be bettered with incorporation of the actual type of relations between 

genes and drugs and could use either of the methods used by Method B or Method C in 

order to do so.  

● Method B could easily incorporate biological knowledge to make rules from Method C, 

such as the fact that only ‘enzymes’ can ‘metabolize’ drugs and the recognition of 

negative relationships.  
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● Both Methods B and C can try to incorporate drug structural and indication similarity 

from Method A as features for determining if two drugs may possibly be related or act on 

the same gene products. 

● Method C could benefit from using the lexicons of known genes and drugs from Method 

B in addition to his own classification tools. This may reduce misclassification of genes 

or drugs in a sentence. 

Natural language processing is still a relatively new field and the three methods 

presented above using sentence co-occurrence, template-based classification and automated 

reasoning with text-mining are some of the first attempt at discovering DDIs without manual 

curation. The number of articles on using text-mining on medical literature is still low and Garten, 

et al., Percha, et al. and Tari, et al. have 14, 11 and 45 citations, respectively (Google Scholar). 

The field still has much room to grow as many new techniques from Machine Learning and NLP 

are carried over to develop new techniques such as Segura-Bedmar’s shallow linguistic kernel 

technique for DDI extraction [15] or as established techniques are refined and improved, such 

as the recent attempts to resolving anaphoras [16], which could really improve sentence-level 

techniques such as Garten, et al.’s and Percha, et al.’s. As new techniques develop, the ability 

to source DDIs (as well as other important information) from unstructured medical will improve, 

thus allowing medicine to better people’s quality and longevity of life. 
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